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The approximation of the Stokes problem in axisymmetric geometries using the
spectral element method is considered. The presence of the volume elementr dr dz in
the weak formulation of the problem is shown to be a potential source of difficulty.
The discrete equations associated with nodes on the axis of symmetry can lead
to a degeneracy in the global system of equations. This difficulty is resolved by
incorporating the factorr into the weight function for spectral elements adjacent
to the axis of symmetry and using appropriate basis functions in these elements in
the radial direction. Properties of the Jacobi polynomials are used to construct the
elements of the modified method. Numerical results are presented demonstrating
some of the features of the proposed approach.c© 2000 Academic Press
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1. INTRODUCTION

In the weak formulation of a system of partial differential equations defined in an ax-
isymmetric geometry special attention needs to be paid to the discretization along the axis
of symmetry due to the presence ofr factors which originate from the definition of the in-
finitesimal volumedÄ = r dr dz. On the axis of symmetry some of the equations generate
trivial algebraic relations (0= 0), which result in an underdetermined system of equations.
It is possible to divide both sides of the offending equation by the radial distance,r , before
taking the limitr → 0. This method is, for instance, applied by Van Kemenade and Deville
[9] to the integration of the extra-stress components along the centerline of an axisymmet-
ric viscoelastic flow problem. However, in certain cases, the existence of a trivial equation
depends on the orthogonality of the grid on the symmetry axis. This is, for instance, the
case for the gradient of the pressure in the axial direction in flow problems.
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The use of Jacobi polynomials will be illustrated using the Stokes equations for an
incompressible creeping flow. The Stokes equations in an axisymmetric coordinate system
are given by the incompressibility constraint
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and the Newtonian constitutive equation
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in which u = (ur , uz) denotes the velocity vector in axisymmetric coordinates,p is the
pressure,τ is the extra-stress tensor, andη is the viscosity coefficient.

Consider the numerical solution of the Stokes problem in some axisymmetric geometry,
Ä, using the spectral element method. The domainÄ is divided into a number of nonover-
lapping spectral elements,Äk, k = 1, . . . , K . Each spectral elementÄk is mapped onto the
parent elementD = [−1, 1]× [−1, 1]. The mapping is usually performed using an isopara-
metric or transfinite mapping. Therefore, we may associate with each point(s, t) ∈ D a
unique point(r, z) ∈ Äk, i.e.,

r (s, t) = f (s, t), z(s, t) = g(s, t),

where f andg are prescribed functions.
The PN − PN−2 method of Maday and Patera [7] ensures compatibility between the

discrete velocity and pressure spaces. In this method the pressure approximation is chosen
to be a polynomial of degree 2 lower than the corresponding velocity approximation. The
pressure approximation can be expressed in terms of Lagrangian interpolating polynomials
based on the interior Gauss–Lobatto Legendre nodes. The Legendre polynomials are usually
chosen for solving the weak formulation of the problem because of the unit weight function
associated with them. Therefore, for(r, z) ∈ Äk we can write (see [3], for example)

pk
N(r, z) =

N−1∑
i=1

N−1∑
j=1

pi, j h̃i (s)h̃ j (t),

whereh̃i (s), i = 1, . . . , N − 1, are the Lagrangian interpolating polynomials defined on
the interior Gauss–Lobatto Legendre points.
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The weak formulation of the component of the momentum equation in the axial direction
(3) over elementÄk is

−
∫
Äk

(
τ rz ∂v

∂r
+ τ zz∂v

∂z
− p

∂v

∂z

)
r dr dz= 0, (5)

wherev is a test function associated with the axial component of the velocity. Transforming
this to the parent element gives∫

D

[
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sgn(J)r (s, t) ds dt= 0,

in which J is the determinant of the transfinite mapping. If one substitutes the above
apprximation forp into this equation and considers the test functions

vk,l (s, t) = hk(s)hl (t), k, l = 0, . . . , N,

in which

hi (xj ) =
{

1 if j = i,
0 otherwise,

(6)

wherexi , i = 0, . . . , N, are the Gauss–Lobatto points to be derived in Section 3, and one
replaces the domain integral by a quadrature rule based on the Gauss–Lobatto points, one
obtains the discretization of the pressure term as

N∑
m=0

N∑
n=0

[
N−1∑
i=1

N−1∑
j=1

pi, j h̃i (sm)h̃ j (tn)

(
∂r

∂s
hk(sm)h

′
l (tn)−

∂r

∂t
h′k(sm)hl (tn)

)
r (sm, tn)wmwn

]
,

(7)

for k, l = 0, . . . , N and in whichwm,m= 0, . . . , N, are the weights associated with the
Gauss–Lobatto integration rule.

We assume, without loss of generality, that the side which corresponds to the symmetry
axis r = 0 is parametrized bys= −1 on the parent domain. If the grid is locally orthog-
onal to the symmetry line, i.e.,∂r/∂t = 0 at s= −1, then the integral approximated by
(7) vanishes if a Gauss–Lobatto integration is used to approximate the integral. The ex-
pression (7) yields zero whenk = 0 andl is arbitrary, i.e., a point on the symmetry axis,
because the second term vanishes owing to the fact that∂r/∂t = 0 while the first term does
not contribute because the only nonzero contribution, due to (6), occurs whensm = 0, in
which caser (sm, tn) = 0. So fork = 0 the gradient matrix for the pressure will contain
a line with only zeros. Since the incompressibility matrix is the transpose of the gradient
matrix, the incompressibility matrix will have a column containing only zeros whenk = 0.
The extra-stress componentτzz, however, does not contribute to (5) no matter what the
value of ∂r/∂t is. The shear stress component in (5) is set equal to zero at the axis of
symmetry.
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FIG. 1. Geometry of the parent domain forN= 8.

This, in itself, is a drawback of using Legendre basis functions in axisymmetric problems,
but the situation deteriorates further if such an element is connected to a spectral element
which is not orthogonal to the centerline, in which case the above integral does contribute
to the discrete gradient operator, causing an artifical jump in the pressure solution along the
centerline.

The main reason for this deficiency is that for points along the symmetry axis we have
r = 0. This problem can be circumvented if the factorr is incorporated into the weight
function provided, of course, that the numerical weights associated with this weight function
can be shown to be positive. The classical orthogonal polynomials are all defined on the
standard interval [−1, 1]. Therefore the continuous weight function which goes to zero in
a similar fashion asr is given by(1+ s), which is zero fors= −1. Comparing this with
orthogonal polynomials arising from singular Sturm–Liouville problems leads us naturally
to the Jacobi polynomialsP(α,β)

k (x) with α = 0 andβ = 1.
We will use these Jacobi polynomials only in the radial direction when the spectral

element is adjacent to the centerline and retain the Legendre approximation in the axial
direction. Figure 1 shows the parent domain and the Gauss–Lobatto grid in which in thes-
direction (the vertical grid lines) a Jacobi–Gauss–Lobatto grid is used and in thet-direction
(the horizontal grid lines) a Legendre–Gauss–Lobatto grid is used. If the spectral element is
not adjacent to the symmetry line Legendre polynomials will be used in both directions. As
can be seen from Fig. 1 the grid spacing on the Jacobi–Gauss–Lobatto grid is not symmetric
in contrast to that on the Legendre grid.

The outline of the paper is as follows. In Section 2 the properties of the Jacobi polynomials
that are relevant to this paper are presented. In Section 3 interpolating polynomials based on
the Jacobi–Gauss–Lobatto are introduced together with associated quadrature rules. These
polynomials are used as basis functions in the spectral element method. The source of
difficulty along the axis of symmetryr = 0 is described in Section 4, and a technique, based
on the introduction of a scaled radiusr̃ , which overcomes this problem is discussed. Finally,
in Section 5 numerical results are presented for the application of the new approximation
to the nontrivial axisymmetric problem of a sphere falling under the influence of gravity
along the centerline of a cylindrical tube filled with a very viscous fluid. Section 6 concludes
the paper with a summary of the result and a discussion of some of the issues raised. In
the Appendix the corrected version of the subroutineJACOBF for the determination of the
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Gauss–Lobatto integration points is given. The original version of this code can be found
in [1].

2. JACOBI POLYNOMIALS

The Jacobi polynomialsP(α,β)
k (x) are the eigenfunctions of the Sturm–Liouville problem

−(p(x)u′(x))′ + q(x)u(x) = λw(x)u(x), x ∈ (−1, 1), (8)

together with suitable boundary conditions. The coefficientsp(x),q(x), andw(x) are real-
valued functions such thatp(x) is a strictly positive, continuously differentiable function
on (−1, 1) and continuous atx = ±1; q(x) is nonnegative, continuous, and bounded on
(−1, 1); andw(x) is nonnegative, continuous, and integrable over(−1, 1).

The Sturm–Liouville problem is singular ifp(x) vanishes atx = ±1. This property
ensures that the expansion of an infinitely differentiable function in terms of these eigen-
functions converges with spectral accuracy; i.e., the coefficients with respect to this basis
of eigenfunctions decay faster than algebraically. The Jacobi polynomialsP(α,β)

k (x) are the
eigenfunctions of the singular Sturm–Liouville problem with

p(x) = (1− x)1+α(1+ x)1+β, for α, β > −1,

q(x) = 0,

and

w(x) = (1− x)α(1+ x)β .

Important special cases are obtained forα = β = 0 (the Legendre polynomials) and forα =
β = −1/2 (the Chebyshev polynomials). The Jacobi polynomials satisfy the orthogonality
property ∫ 1

−1
P(α,β)

m (x)P(α,β)
n (x)w(x) dx = 0, for m 6= n.

The Jacobi polynomials may be generated efficiently using a three-term recurrence rela-
tion providedP(α,β)

0 (x) andP(α,β)
1 (x) are known. It is conventional to chooseP(α,β)

0 (x) = 1
and to constructP(α,β)

1 (x) using the above orthogonality relation. In addition the normal-
ization conditionP(α,β)

k (1) = 1, ∀k, is used. Thus, forα = 0 andβ = 1 we have

P(0,1)
1 (x) = 1

2
(3x − 1).

The particular valuesα = 0 andβ = 1 were chosen because this choice corresponds to a
weight function(1+ x) in the Sturm–Liouville problem. This particular weight function
goes to zero forx→−1 asr → 0, as was explained in the introduction.

The corresponding eigenvalue isλ1 = 3, which is obtained from (8).
Thus, with a knowledge of the first two members of the orthogonal set the remainder

may be generated using the recurrence relation

P(0,1)
k+1 (x) =

[
(2k+ 3)(2k+ 1)x − 1

(k+ 2)(2k+ 1)

]
P(0,1)

k (x)−
[

k(2k+ 3)

(k+ 2)(2k+ 1)

]
P(0,1)

k−1 (x). (9)
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The proof of this recursion relation can be found in Sz¨ego [8] for general Jacobi polynomials.
From (9) the recursion relation for the derivatives can be obtained:

d

dx
P(0,1)

k+1 (x) =
[

2k+ 3

k+ 2

]
P(0,1)

k (x)+
[
(2k+ 3)(2k+ 1)x − 1

(k+ 2)(2k+ 1)

]
d

dx
P(0,1)

k (x)

−
[

k(2k+ 3)

(k+ 2)(2k+ 1)

]
d

dx
P(0,1)

k−1 (x). (10)

The orthogonal polynomials generated by (9) all satisfyP(0,1)
k (1) = 1. Further useful prop-

erties of theP(0,1)
k are listed below.

The corresponding eigenvalues are given byλk = k(k+ 2). This follows immediately if
one inserts a series

∑∞
i=0 ai xi and requires that all coefficientsal = 0 for l > k. Therefore,

the differential equation satisfied by the Jacobi polynomialsP(α,β)
k (x) can be written in the

form

(1− x2)
d2P(0,1)

k

dx2
+ (1− 3x)

d P(0,1)k

dx
+ k(k+ 2)P(0,1)

k = 0. (11)

Furthermore, we can establish by induction using (9) that

P(0,1)
k (−1) = (−1)k(k+ 1). (12)

Since we know the values ofP(0,1)
k (−1) andP(0,1)

k (1) we can use (11) to obtain expres-
sions for the values of the derivative ofP(α,β)

k (x) at the end-points of the interval [−1, 1]:

d P(0,1)k

dx

∣∣∣∣
x=−1

= (−1)k+1 1

4
k(k+ 1)(k+ 2) (13)

and

d P(0,1)k

dx

∣∣∣∣
x=1

= 1

2
k(k+ 2). (14)

Note that these particular Jacobi polynomials are neither symmetric nor antisymmetric, in
contrast to the Legendre or Chebyshev polynomials.

3. REPRESENTATION OF THE BASIS FUNCTIONS IN THE RADIAL DIRECTION

Since the weak formulation of partial differential equations requires the evaluation of
integrals a suitable integration method has to be selected. In this paper the Gauss–Lobatto
integration method will be used. The integration points are given by the (N + 1) so-called
Jacobi–Gauss–Lobatto points. The integration rule

∫ 1

−1
w(x)q(x) dx =

N∑
j=0

w j q(xj ) (15)

is exact for all polynomialsq(x) of degree 2N − 1 or less if the weightsw j , j = 0, . . . , N,
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satisfy the linear system of equations

N∑
j=0

(xj )
kw j =

∫ 1

−1
w(x)xk dx, 0≤ k ≤ N,

wherew(x) is the Sturm–Liouville weight function and the nodesxj , j = 0, 1, . . . , N, are
chosen as follows:x0 = −1, xN = 1, andxj , j = 1, . . . , N − 1, are the zeros ofd P(0,1)N /dx.
It is fairly straightforward to prove that all the Gauss–Lobatto points are contained in the
interval (−1, 1). The zeros ofd P(0,1)N /dx are usually calculated numerically using, for
instance, the subroutine given in Appendix C of [1]. Since this subroutine contains a small
error, a corrected version will be given in the Appendix. The associated weights in the
numerical integration procedure forα = 0, β = 1 are given by Funaro [2] as

w0 = 4(2N + 1)

N2(N + 1)2(N − 1)(N + 2)

N−1∑
j=1

(1− xj ),

w j = −2(2N + 1)

N(N + 2)
· 1

P(0,1)
N (xj )

d
dx P(0,1)

N−1 (xj )
, 1≤ j ≤ N − 1,

wN = 2(2N + 1)

(N + 2)(N + 1)N(N − 1)

N−1∑
j=1

(1+ xj ),

wherexj , 1≤ j ≤ N − 1, are the interior Gauss–Lobatto points. The values ofP(0,1)
N (xj )

and d P(0,1)N−1 (xj )/dx can be determined using the recursion relations (9) and (10),
respectively.

Instead of expanding a function in terms of orthogonal polynomials directly, one usually
prefers to approximate the function using a Lagrangian interpolating polynomial based on
the Gauss–Lobatto points. Therefore, in the present situation the polynomialINu which
interpolates a given functionu at the Gauss–Lobatto points has the representation

(INu)(x) =
N∑

j=0

u j h j (x), (16)

where the Lagrangian coefficients are given by

h0(x) =
2(−1)N(x − 1)

[
d

dx P(0,1)
N (x)

]
(N + 2)(N + 1)N

, (17)

h j (x) =
(x2− 1)

[
d

dx P(0,1)
N (x)

]
N(N + 2)P(0,1)

N (xj )(x − xj )
, 1≤ j ≤ N − 1, (18)

hN(x) =
(x + 1)

[
d

dx P(0,1)
N (x)

]
N(N + 2)

. (19)

The polynomialshi (x) are constructed so thathi (xj ) = δi j . The derivative of the interpolant
at the nodes may be computed using

(INu)′(xi ) =
N∑

j=0

Di, j u j , (20)
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whereDi j = h′j (xi ). Using (17)–(19) one can obtain explicit representations of the elements
of D given by

Di, j =



−N(N+ 2)
6 , i = j = 0,

2(−1)N

(N+ 1)
P(0,1)N (xi )

(1+ xi )
, 1≤ i ≤ N − 1, j = 0,

(−1)N

(N+ 1) , i = N, j = 0,

(−1)N N
2 · 1

P(0,1)N (xj )(1+ xj )
, i = 0, 1≤ j ≤ N − 1,

P(0,1)N (xi )

P(0,1)N (xj )

1
(xi − xj )

, i 6= j, 1≤ i, j ≤ N − 1,

−1
2(1+ xi )

, 1≤ i = j ≤ N − 1,

1
P(0,1)N (xj )

· 1
(1− xj )

, i = N, 1≤ j ≤ N − 1,

(−1)(N+1)

4 (N + 1), i = 0, j = N,

−P(0,1)N (xi )

(1− xi )
, 1≤ i ≤ N − 1, j = N,

N(N+ 2)− 1
4 , i = j = N.

(21)

4. DISCRETIZATION ON THE AXIS OF SYMMETRY

Consider the weak form of the (partial differential) equationLu = f in an axisymmetric
coordinate system. Supposeu ∈ V is approximated byuh ∈ Vh. The weak formulation of
this axisymmetric problem is: Finduh ∈ Vh such that∫

r

∫
z
(Luh, vh) r dr dz=

∫
r

∫
z

f vhr dr dz ∀vh ∈ Vh, (22)

in which bothr andz are functions ofs andt defined on the parent element. Rewriting this
in terms of the Jacobi polynomials with weight functionw(s) = (1+ s) gives∫

r

∫
z
(Luh, vh)

r

w
w dr dz=

∫
r

∫
z

f vh r

w
w dr dz ∀vh ∈ Vh. (23)

If one now letss→−1 then bothr → 0 andw→ 0; thereforer/w is given by L’Hôpital’s
rule by

r

w
= r (s, t)

(1+ s)
= ∂r

∂s

∣∣∣∣
s=−1

if s= −1. (24)

The multiplicative factorw in the weak formulation is absorbed into the numerical weights
and these are always positive, even at the centerline. It is therefore convenient to introduce
the scaled radius̃r by

r̃ =
{ r
w

if r > 0,

∂r
∂s if r = 0.

(25)
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FIG. 2. Comparison between the Jacobi polynomials (dotted curve) and the Legendre polynomials (solid
curve) forN= 1, . . . ,9.

Note that∂r/∂s 6= 0 so the trivial equation mentioned in the introduction is circumvented.
Furthermore the scaling ofr can be performed beforehand without testing whether we are
really dealing with a “0= 0” equation or not.

Since we want to connect spectral elements adjacent to the symmetry axis in which
the function is described by Jacobi polynomials with spectral elements not adjacent to
the symmetry axis in which the solution in the radial direction is described by Legendre
polynomials it is instructive to see how the Jacobi polynomials behave fors→ 1. Figure 2
compares the first nine Jacobi polynomials with the corresponding Legendre polynomials.
This figure demonstrates that whenN increases the behavior of both polynomials near
s= 1 coincides. This also follows from the fact thatP(0,1)

N (1) = P(0,0)
N (1) = 1 and that

d

dx
P(0,0)

N

∣∣∣∣
x=1

= 1

2
N(N + 1),

while

d

dx
P(0,1)

N

∣∣∣∣
x=1

= 1

2
N(N + 2),
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so

d

dx
P(0,1)

N

∣∣∣∣
x=1

→ d

dx
P(0,0)

N

∣∣∣∣
x=1

for N →∞.

5. THE SPHERE IN A TUBE

The method described in the preceding section will now be applied to the mixed velocity–
pressure–stress formulation of the Stokes problem. Existence and uniqueness of this mixed
method have been discussed in [3, 4].

The velocity–pressure–stress formulation of the Stokes problem involves the solution of
the following system of partial differential equations:

τ − 2ηd = 0,

∇ · τ −∇p = 0, (26)

∇ ·w = 0.

Hereτ is the extra-stress tensor,w is the velocity,p is the pressure, andd is the rate of
deformation tensor. The constantη is the kinematic viscosity.

The configuration considered is a sphere with radiusRs falling along the centerline of
a tube of radiusRt with a prescribed velocityV . This situation is sketched in Fig. 3. The
idea is to divide the physical domainÄ into several spectral elements,Äk, 1≤ k ≤ K , such

FIG. 3. Geometry of the sphere in a tube.
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that
⋃K

k=1 Ǟk = Ǟ andÄk ∩Äl = ∅ for all k 6= l . We also assume that the decomposition
is geometrically conforming in the sense that the intersection of two adjacent elements is
either a common vertex or an entire edge. Each of the spectral elements is mapped onto the
parent elementD = [−1, 1]× [−1, 1] using the transfinite mapping technique [5]. Note
that when a bilinear transfinite mapping is used, the grid can be onlyC0 across element
boundaries.

We approximate the dependent variables on the parent element using Legendre
Lagrangian interpolants of degreeN in both spatial directions or, when the spectral element
is adjacent to the symmetry line, Jacobi Lagrangian interpolants in the radial direction only.
Let PN,K (Ä) denote the space of polynomials of degreeN or less, defined over theK el-
ements. We choose the velocity field inPN,K (Ä) ∩ H1(Ä) and construct a Gauss–Lobatto
Legendre grid in each of the elementsÄk, 1≤ k ≤ K . The choice of velocity approxi-
mation space ensures that continuity is enforced across element boundaries. The velocity
representation is then given by

vk
N(ξ, ζ ) =

N∑
i=0

N∑
j=0

vk
i, j hi (ξ)h j (ζ ), (27)

where the Lagrangian interpolantshi (ξ), 0≤ i ≤ N, defined on the parent interval with
ξ ∈ [−1, 1], are given either by the Legendre Lagrangian interpolant

hi (ξ) = − (1− ξ2)L ′N(ξ)
N(N + 1)L N(ξi )(ξ − ξi )

(28)

or by the Jacobi Lagrangian interpolant given by (17)–(19).
Maday and Patera [7] have shown that by choosingPN−2(Ä) as the approximation

space for the pressure if the velocity approximation space isPN(Ä) the discrete Babu˘ska–
Brezzi condition is satisfied. For the Legendre approximation this means that the pressure
is expanded as

pk
N(ξ, ζ ) =

N−1∑
i=1

N−1∑
j=1

pi, j h̃i (ξ)h̃ j (ζ ), (29)

in which the interpolants̃hi (ξ), 1≤ i ≤ N − 1, are defined on the interval [−1, 1] and in
the case of the Legendre polynomials are given by

h̃i (ξ) = −
(
1− ξ2

i

)
L ′N(ξ)

N(N + 1)L N(ξi )(ξ − ξi )
(30)

and for the Jacobi polynomials are given by

h̃i (ξ) = −
(
1− ξ2

i

)[
d
dξ P(0,1)

N (ξ)
]

N(N + 2)P(0,1)
N (ξi )(ξ − ξi )

. (31)

The components of the extra-stress tensor are chosen inPN,K (Ä). This means that the
extra-stress tensor has a representation of the form

τ k
N(ξ, ζ ) =

N∑
i=0

N∑
j=0

τ k
i, j hi (ξ)h j (ζ ), (32)
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in whichhi (ξ) is given either by (28) for the Legendre polynomials or by (17)–(19) for the
Jacobi polynomials.

Along an element interface contiguous elements share common grid points and so there
are two unknowns associated with each component of velocity and extra-stress at such
points. The values of these unknowns are forced to be the same for the velocity, thus
giving rise to a continuous velocity approximation. However, this is not done explicitly for
the extra-stress, which therefore allows for the possibility of a discontinuous extra-stress
approximation across element boundaries (see [4] for the justification of this approach).

The discrete problem is constructed by choosing appropriate test spaces for each of
the variables and then using a basis for these spaces as test functions in the variational
formulation. This process leads to the system

ANτ N − B∗NwN = f N,

−BNτ N + D∗N pN = gN, (33)

DNwN = hN,

in which f N contains Dirichlet boundary conditions and the body forces,gN contains pre-
scribed boundary values, andhN contains prescribed velocity values. HereAN is the extra-
stress mass matrix,BN is the spectral approximation to the divergence operator acting on
symmetric 2-tensors, andDN is the spectral approximation of the divergence operator acting
on vectors.

This system of equations can be written more succinctly as AN −B∗N 0

−BN 0 D∗N
0 DN 0


 τ N

wN

pN

 =
 f N

gN

hN

. (34)

Since AN is a diagonal matrix, owing to the orthogonality of the basis functions, (34)
constitutes a symmetric system. The zeros on the diagonal of this system mean that either
pivoting or preconditioning is required to solve it numerically. Following the doubly con-
strained minimization procedure described in [3] this system can be solved. This approach
essentially applies pivoting and an incomplete LU-factorization.

Eliminating the discrete extra-stress tensor from (331) and (332) one obtains

−BN A−1
N B∗NwN + D∗N pN = gN + BN A−1

N f N . (35)

Since the mass matrix,AN , is a diagonal matrix with strictly positive diagonal elements,
(35) can be set up using∼N3d/2 multiplications, in whichN is the polynomial order used
in the spectral method,d is the number of spatial dimensions, and the factor 1/2 is obtained
if one takes the symmetry of−BN A−1

N B∗N into account. This matrix, however, does not
have to be formed explicitly if an iterative solution method is used since one only needs to
calculate the operation of this matrix on a given vector.

Eliminating the discrete velocity vectorwN from (35) and (333) yields the equation which
pN has to satisfy forwN to satisfy (33),

QN pN = hN − DN
(
BN A−1

N B∗N
)−1(

gN + BN A−1
N f N

)
, (36)
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where

QN = −DN
(
BN A−1

N B∗N
)−1

D∗N . (37)

AlthoughBN A−1
N B∗N is a full matrix its inverse does not need to be calculated when a nested

conjugate gradient (CG) method is used to solve (36) forpN .
OncepN is calculated from (36), the vectorwN satisfying (333) can be calculated from

(35), after which the discrete extra-stress approximationτ N which will satisfy (332) follows
from (331). So the whole solution procedure follows the same doubly constrained approach
as the compatibility analysis described in [3].

The physical parameters used in the problem of flow past a sphere areV = 1, η = 1, Rs =
1, Rt = 2, andL = 8. This means that the velocity is zero at the sphere anduz = 1, ur = 0 at
inflow, outflow, and the cylinder wall. At the axis of symmetryur = 0 andτrz = 0. Although
the presence of the sphere is felt everywhere in the cylinder due to the elliptic nature of the
governing equations, a cylinder of lengthL = 8 is sufficient to calculate the nondimensional
drag. The discretization parameter isN, the degree of the spectral approximation in each
element. Results obtained on the nearly orthogonal meshes depicted in Fig. 4 are presented
usingN = 6, 8, 10, and 12 for the Jacobi–Legendre method. These plots indicate that no
spurious transitions from Jacobi–Legendre elements to Legendre–Legendre elements are
present. Also, the solution at and near the symmetry axis is well resolved using the mixed
Jacobi–Legendre interpolation.

Figure 5 presents a sequence of meshes that are nonorthogonal to the symmetry axis.
Figure 6 displays the contour plot of the pressure forN = 10. The behavior of the extra-
stress components and their dependence on the value ofN along the symmetry axis and

FIG. 4. The four spectral element grids for which results of the sphere–cylinder problem are given. These
correspond toN= 6, N= 8, N= 10, andN= 12, respectively forK = 5. The bold lines indicate the spectral
elements; the other lines are the Gauss–Lobatto grid. This mesh is nearly orthogonal to the symmetry axis.
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FIG. 5. The four spectral element grids for which results of the sphere–cylinder problem are given. These
correspond toN= 6, N= 8, N= 10, andN= 12, respectively forK = 5. The bold lines indicate the spectral
elements; the other lines are the Gauss–Lobatto grid. This mesh is nonorthogonal to the symmetry axis.

the sphere are given in Figs. 7–10 forN = 6, 8, and 10. All solutions are interpolated on a
fine mesh with polynomials of orderN = 20 before plotting. Since the graphs forN = 8
andN = 10 are almost indistinguishable, there was little point in increasing the degree of
approximation further. All the graphs show that convergence has been obtained for points

FIG. 6. Contour plot of the pressure.
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FIG. 7. Graphs of the extra-stress componentτrr along the symmetry axis and the sphere forN= 6, N= 8,
andN= 10.

on the symmetry axis. The only differences occur for points on the surface of the sphere,
which also explains the different nondimensional drags for various polynomial orders given
in Table I.

The graph of theτzz-component of the extra-stress tensor depicted in Fig. 9 forN = 6
shows little bumps nearx = −2 and x = 2. These are a result of the discontinuous

FIG. 8. Graphs of the extra-stress componentτrz along the symmetry axis and the sphere forN= 6, N= 8,
andN= 10.
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FIG. 9. Graphs of the extra-stress component,τzz along the symmetry axis and the sphere forN= 6, N= 8,
andN= 10.

L2-approximation of the extra-stress components as explained in [4]. For higher values
of N this jump decreases and will vanish in the limit ofN →∞.

The pressure along the symmetry axis, which was identified in the introduction as a
potential source of difficulty, is displayed in Fig. 11. Since the pressure is determined up to
a constant the graphs for different values ofN do not necessarily overlap. To compare the

FIG. 10. Graphs of the extra-stress componentτθθ along the symmetry axis and the sphere forN= 6, N= 8,
andN= 10.
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TABLE I

Nondimensionalized Drag on the Sphere Calculated with

the Jacobi–Legendre Method and the Legendre–Legendre

Method on a Nearly Orthogonal Mesh

N F∗ Legendre–Legendre F∗ Jacobi–Legendre

6 5.949195 5.945073
8 5.948211 5.949030

10 5.947920 5.947822
12 5.947471 5.947394
14 5.947388 —
16 5.947381 —
18 5.947381 —

Note.Drag compared toF∗ = 5.94739.

various approximations, the pressure level has been chosen such that the pressure is equal
to zero forx = 0. The inset to Fig. 11 shows the convergence of the pressure jump between
spectral elements for increasing polynomial order.

A nondimensional quantity which is widely used to demonstrate convergence of a given
numerical method on the sphere problem is the drag on the sphere. This is defined to be
the drag on the sphere divided by the Stokes drag of a sphere in an infinite expanse,D =
6πηRsV . These results are tabulated in Table I. The nondimensionalized drag coefficients
are compared with the value obtained by [6] on their finest mesh using the EEME/FEM.

The results in Table I are compared with more extensive computations using the
Legendre–Legendre formulation. Both methods display an exponential convergence to-
ward the limiting value ofF∗ = 5.9474, in accordance with the results by Lunsmannet al.
[6]. Table I shows that the new polynomial basis is able to give results comparable with a
method which also produces satisfactory results. This is a prerequisite for any new method!

FIG. 11. Graphs of the pressurep along the symmetry axis and the sphere forN= 6, N= 8, andN= 10.



98 GERRITSMA AND PHILLIPS

TABLE II

Nondimensionalized Drag on the Sphere Calculated with

the Jacobi–Legendre Method and the Legendre–Legendre

Method on a Skew Mesh

N F∗ Legendre–Legendre F∗ Jacobi–Legendre

6 5.963221 5.954784
8 5.955422 5.950952

10 5.950300 5.948051
12 5.948018 5.947435

Note.Drag compared toF∗ = 5.94739.

Similar calculations have been performed on the meshes displayed in Fig. 5 (see
Table II). Again all meshes consist of five spectral elements with increasing polynomial
order. Although the solutions on both meshes converge to the limiting value ofF∗ = 5.9474
the Jacobi–Legendre formulation gives a slightly smaller error than does the conventional
Legendre–Legendre approach. This means that the Jacobi–Legendre basis offers an im-
provement over the Legendre–Legendre formulation in this specific case. However, it is not
clear whether this conclusion holds in general. We expect that the differences between the
Jacobi–Legendre and the Legendre–Legendre method are small in situations where the grid
is almost orthogonal to the axis of symmetry but that the Jacobi–Legendre performs better
in the case where the grid lines are nonorthogonal to the symmetry axis. This is graphically
illustrated by Figs. 12 and 13. For the case where the grid lines are almost normal to the
axis of symmetry both logarithmic errors are of the same order of magnitude. Figure 12
seems to suggest that the Jacobi–Legendre method converges faster for higherN, than does
the Legendre–Legendre method, but the values ofN are too low to actually conclude this.

Figure 13 shows that in the case where the grid lines are highly nonorthogonal to the sym-
metry axis the logarithmic error as a function ofN is much smaller for the Jacobi–Legendre
method than for the Legendre–Legendre method as was anticipated in the discussion in
Section 1.

FIG. 12. Logarithmic convergence plot corresponding to the data in Table I.
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FIG. 13. Logarithmic convergence plot corresponding to the data in Table II.

6. CONCLUSIONS

The use of Jacobi polynomials in spectral elements adjacent to the axis of symmetry
in axisymmetric problems circumvents a special treatment for points for whichr = 0 by
introducing a scaled radial distancer̃ . This means that one does not have to check whether
one is dealing with a trivial equation since the scaled radial distance can be introduced
beforehand. This in itself is a special treatment, but it is automatically built into the method.
By using the Jacobi polynomials in the Stokes problem discussed above, we see that the
axial pressure gradient along the centerline contributes to the set of algebraic equations
to be solved, whereas if Legendre polynomials were used this would not, in general, have
been the case. A comparison with the Legendre–Legendre formulation, in which the trivial
equation is avoided by means of an application of L’Hˆopital’s rule, shows an exponential
rate of convergence similar to that found in the Jacobi–Legendre formulation.

It has to be noted that we have used explicitly the fact that the side corresponding tos= −1
coincides with the symmetry axis. If, for instance,s= 1 is mapped onto the symmetry axis
instead, then it is preferable, of course, to use the Jacobi polynomials defined byP(1,0)(s).
These polynomials are associated with a weight function(1− s), which will go to zero for
s→ 1. In the spectral element program used in this study the spectral elements adjacent to
the symmetry axis are renumbered in such a way that the symmetry axis corresponds to the
sides= −1 on the parent domain. Alternatively one may employP(1,0)(s) polynomials
when the “wrong” side is mapped onto the centerline.

If the symmetry axis coincides withs= −1, one can generalize the above described
procedure toP(α,1)(s) polynomials corresponding to a weight function(1− x)α(1+ x).
This weight function will also have the property that is goes to zero in the same way asr
goes to zero. Although alternative polynomials are feasible, it is not clear what the merits
are of using even more general Jacobi polynomials.

The method described in this paper is generic in the sense that it can be applied to all
axisymmetric (partial differential) equations. The application to the axisymmetric Stokes
problem merely serves as an illustration. This particular problem has been tackled on two
types of meshes. On the first mesh the grid lines are almost orthogonal to the symmetry axis
and both the mixed Jacobi–Legendre method and the Legendre–Legendre method perform
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equally well. On the second mesh the grid lines have been chosen to be nonorthogonal to
the symmetry axis and the mixed Jacobi method gives better results than the full Legendre
basis, which can be clearly seen from the convergence plots.

APPENDIX

Subroutine to Calculate the Gauss–Lobatto Points

This subroutine is essentially the one found in [1] with a minor correction in the routine
JACOBF. The program is written in FORTRAN.

subroutine jacobl(alpha,beta,N,xjac)

c

c computes the Gauss-Lobatto collocation points for the

jacobi polynomials

c

c n: degree of approximation

c alpha: parameter in jacobi weight

c beta: parameter in jacobi weight

c

c xjac: output array with the Gauss-Lobatto roots

c they are ordered from the largest (+1.0)
to the smallest (- 1.0)

c

implicit none

integer N

double precision alpha,beta,xjac(0:50)

c

integer np,nh,npp,i,j,jm,k,kstop

double precision pnp1p,pdnp1p,pnp,pdnp,pnm1p,pdnm1,

$ pnp1m,pdnp1m,pnm,pnm1m,pdnm,det,

$ pnm1,cs,x,pnp1,pdnp1,pn,pdn,

$ rp,rm,ag,bg,dth,cd,sd,ss,poly,pder,

$ cssave,delx,epsg,recsum,hulpar(0:64),pi

double precision alp,bet,rv

common /jacpar/ alp,bet,rv

data kstop/10/

data epsg/1.0d- 25/
c

pi= 4d0* datan(1d0)
alp= alpha

bet= beta

rv= 1+alp
np= n+ 1

c

c compute the parameters in the polynomial whose roots

are desired



AXISYMMETRIC STOKES PROBLEMS 101

c

call jacobf(np,pnp1p,pdnp1p,pnp,pdnp,pnm1p,pdnm1,1d0)

call jacobf(np,pnp1m,pdnp1m,pnm,pdnm,pnm1m,pdnm1,- 1d0)
det= pnp* pnm1m- pnm* pnm1p
rp= - pnp1p
rm= - pnp1m
ag= (rp* pnm1m- rm* pnm1p)/det
bg= (rm* pnp- rp* pnm)/det

c

xjac(1)= 1d0

c nh= (n+1)/2
nh= n

c

c set-up recursion relation for initial guess for the roots

c

dth= pi/(2* n+1)
cd= cos(2d0* dth)
sd= sin(2d0* dth)
cs= cos(dth)

ss= sin(dth)

c

c compute the first half of the roots by polynomial deflation

c

do 39 j=2,nh

x=cs

do 29 k=1,kstop

call jacobf(np,pnp1,pdnp1,pn,pdn,pnm1,pdnm1,x)

poly= pnp1+ag* pn+bg* pnm1
pder= pdnp1+ag* pdn+bg* pdnm1
recsum= 0d0

jm= j- 1
do 27 1= 1,jm

recsum= recsum+ 1d0/(x- xjac(i))
27 continue

delx= - poly/(pder- recsum* poly)
x= x+ delx

if (abs(delx).lt.epsg) goto 30

29 continue

30 continue

xjac(j)= x

cssave= cs* cd- ss* sd
ss= cs* sd+ss* cd
cs= cssave

39 continue

xjac(np)= - 1d0
npp= n+2
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c

c use symmetry for second half of the roots

c

do 112 i=1,N+1
hulpar(N- i+1)= xjac(i)

112 continue

do 113 i=0,N

xjac(i)= hulpar(i)

113 continue

return

end

c

subroutine jacobf(n,poly,pder,polym1,pderm1,polym2,

pderm2,x)

c

c computes the jacobi polynomial (poly) and its derivative

c (pder) of degree n at x

c

implicit double precision(a- h,o- z)
common/jacpar/alp,bet,rv

apb= alp+ bet

poly= 1do

pder= 0d0

if (n.eq.0) return

polylst= poly

pderlst= pder

c

c The following 2 lines differ from the ones given in [1].

c

poly= 5d- 1* (1d0+bet)* (x- 1d0)+ 5d- 1* (1d0+alp)* (x+1d0)
pder= 5d- 1* (2d0+apb)

c

if (n.eq.1) return

do 19 k=2,n

a1= 2d0* k* (k+apb)* (2d0* k+apb- 2d0)
a2= (2d0* k+apb- 1d0)* (alp** 2- bet** 2)

b3= (2d0* k+apb- 2d0)
a3= b3* (b3+1d0)* (b3+2d0)
a4= 2d0* (k+alp- 1d0)* (k+bet- 1d0)* (2d0* k+apb)
polyn= ((a2+a3* x)* poly- a4* polylst)/a1
pdern= ((a2+a3* x)* pder- a4* pderlst+a3* poly)/a1
psave= polylst

pdsave= pderlst

polylst= poly

poly= polyn

pderlst= pder

pder= pdern
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19 contiune

polym1= polylst

pderm1= pderlst

polym2= psave

pderm2= pdsave

return

end

ACKNOWLEDGMENT

This work was supported by the Engineering and Physical Sciences Research Council of the United Kingdom
under Grant No. GR/K58166 while the first author was in residence in the Department of Mathematics, University
of Wales Aberystwyth, U.K.

REFERENCES

1. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,Spectral Methods in Fluid Dynamics, Springer series
in Computational Physics (Springer-Verlag, Berlin/Heidelberg/London, 1987).

2. D. Funaro,Polynomial Approximation of Differential Equations, Lecture Notes in Physics (Springer-Verlag,
Berlin, Heidelberg, 1992), Vol. m8.

3. M. I. Gerritsma and T. N. Phillips, Compatible spectral approximations for the velocity–pressure–stress for-
mulation of the Stokes problem,SIAM J. Sci. Comput.20, 1530 (1999).

4. M. I. Gerritsma and T. N. Phillips, Discontinuous spectral element approximations for the velocity–pressure–
stress formulation of the Stokes problem,Int. J. Numer. Meth. Eng.43, 1401 (1998).

5. W. J. Gordon and C. A. Hall, Construction of curvilinear coordinate systems and application to mesh generation,
Int. J. Numer. Meth. Eng.7, 461 (1973).

6. W. J. Lunsmann, L. Genieser, R. C. Armstrong, and R. A. Brown, Finite element analysis of steady viscoelastic
flow around a sphere in a tube: Calculations with constant viscosity models,J. Non-Newtonian Fluid Mech.
48, 63 (1993).

7. Y. Maday and A.T. Patera, Spectral element methods for the incompressible Navier–Stokes equations, inState
of the Art Surveys in Computational Mechanics, edited by A. K. Noor and J. T. Oden (ASME, New York, 1989),
p. 71.
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