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The approximation of the Stokes problem in axisymmetric geometries using the
spectral element method is considered. The presence of the volume elemdatin
the weak formulation of the problem is shown to be a potential source of difficulty.
The discrete equations associated with nodes on the axis of symmetry can lead
to a degeneracy in the global system of equations. This difficulty is resolved by
incorporating the factor into the weight function for spectral elements adjacent
to the axis of symmetry and using appropriate basis functions in these elements in
the radial direction. Properties of the Jacobi polynomials are used to construct the
elements of the modified method. Numerical results are presented demonstrating
some of the features of the proposed approach 2000 Academic Press
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1. INTRODUCTION

In the weak formulation of a system of partial differential equations defined in an
isymmetric geometry special attention needs to be paid to the discretization along the
of symmetry due to the presencerdfactors which originate from the definition of the in-
finitesimal volumed2 = r dr dz. On the axis of symmetry some of the equations geners
trivial algebraic relations (8= 0), which result in an underdetermined system of equation
It is possible to divide both sides of the offending equation by the radial distantoefore
taking the limitr — 0. This method is, for instance, applied by Van Kemenade and Devi
[9] to the integration of the extra-stress components along the centerline of an axisym
ric viscoelastic flow problem. However, in certain cases, the existence of a trivial equa
depends on the orthogonality of the grid on the symmetry axis. This is, for instance,
case for the gradient of the pressure in the axial direction in flow problems.

81

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



82 GERRITSMA AND PHILLIPS

The use of Jacobi polynomials will be illustrated using the Stokes equations for
incompressible creeping flow. The Stokes equations in an axisymmetric coordinate sy
are given by the incompressibility constraint

1d(ruy) adu,
r or +az

=0, 1)

the momentum equations
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and the Newtonian constitutive equation
auy aur ouy
T Tz O 23% Tuz + air 0
Tz Tz O =1 38% + % 2% 0 ) (4)
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in which u = (ur, u;) denotes the velocity vector in axisymmetric coordinajess the
pressurer is the extra-stress tensor, amds the viscosity coefficient.

Consider the numerical solution of the Stokes problem in some axisymmetric geome
Q, using the spectral element method. The donsaie divided into a number of nonover-
lapping spectral element@y, k = 1, ..., K. Each spectral elemef¥ is mapped onto the
parentelemerd = [—1, 1] x [—1, 1]. The mapping is usually performed using an isopare
metric or transfinite mapping. Therefore, we may associate with each @inte D a
unigue point(r, z) € Q, i.e.,

rs,t) = f(s,t), z(s,t) =g t),

where f andg are prescribed functions.

The Py — Py_2 method of Maday and Patera [7] ensures compatibility between t
discrete velocity and pressure spaces. In this method the pressure approximation is cl
to be a polynomial of degree 2 lower than the corresponding velocity approximation.
pressure approximation can be expressed in terms of Lagrangian interpolating polynor
based on the interior Gauss—Lobatto Legendre nodes. The Legendre polynomials are u:
chosen for solving the weak formulation of the problem because of the unit weight funct
associated with them. Therefore, for z) € Q2 we can write (see [3], for example)

N-1N-1

P2 => > pihiehw,
i=1 j=1
wherehi(s), i = 1,..., N — 1, are the Lagrangian interpolating polynomials defined o

the interior Gauss—Lobatto Legendre points.
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The weak formulation of the component of the momentum equation in the axial direct
(3) over elemen2y is

av v Jdv
— rz__ Z_ _p— |rdrdz=0, 5
/Qk(f ar T a2 paz> ®)

wherev is a test function associated with the axial component of the velocity. Transform
this to the parent element gives

/ 12 0Z0v 9z dv 42 Orodv ordv

TN == """\ =t ==

D ot 9s  9ds ot ot 9s  os ot
or dv

ar dv
+ p<_§£ + ga)}sgr(‘l)r(s,t)ds dt=0,

in which J is the determinant of the transfinite mapping. If one substitutes the abc
apprximation forp into this equation and considers the test functions

v (s, t) = he(s)hi(t), k,1=0,...,N,

in which
1 ifj=i,
hi (x;) = {O otherwise ©
wherex;, i =0,..., N, are the Gauss—Lobatto points to be derived in Section 3, and ¢

replaces the domain integral by a quadrature rule based on the Gauss—Lobatto point:
obtains the discretization of the pressure term as

N N N—1N-1 . . ar ar
D3I  pjhitswh j(tn><ashk<sn>h((tn) — sy (tn>)r(sm, tn>wmwn1,

m=0n=0 | i=1 j=1

(7

fork,1 =0,..., N and in whichwy,, m=0,..., N, are the weights associated with the
Gauss—Lobatto integration rule.

We assume, without loss of generality, that the side which corresponds to the symrr
axisr = 0 is parametrized bg = —1 on the parent domain. If the grid is locally orthog-
onal to the symmetry line, i.edr /9t = 0 ats = —1, then the integral approximated by
(7) vanishes if a Gauss—Lobatto integration is used to approximate the integral. The
pression (7) yields zero whdn= 0 andl is arbitrary, i.e., a point on the symmetry axis,
because the second term vanishes owing to the facithiat = 0 while the first term does
not contribute because the only nonzero contribution, due to (6), occurssyhero, in
which caser (sn, th) = 0. So fork = 0 the gradient matrix for the pressure will contain
a line with only zeros. Since the incompressibility matrix is the transpose of the gradi
matrix, the incompressibility matrix will have a column containing only zeros wher0.
The extra-stress component, however, does not contribute to (5) no matter what th
value of ar /at is. The shear stress component in (5) is set equal to zero at the axi
symmetry.
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FIG. 1. Geometry of the parent domain fbr= 8.

This, initself, is a drawback of using Legendre basis functions in axisymmetric problet
but the situation deteriorates further if such an element is connected to a spectral ele
which is not orthogonal to the centerline, in which case the above integral does contril
to the discrete gradient operator, causing an artifical jump in the pressure solution alon
centerline.

The main reason for this deficiency is that for points along the symmetry axis we h
r = 0. This problem can be circumvented if the factois incorporated into the weight
function provided, of course, that the numerical weights associated with this weight func
can be shown to be positive. The classical orthogonal polynomials are all defined on
standard interval|1, 1]. Therefore the continuous weight function which goes to zero |
a similar fashion as is given by(1 + s), which is zero fors = —1. Comparing this with
orthogonal polynomials arising from singular Sturm—Liouville problems leads us nature
to the Jacobi polynomiaIE’k(“’ﬂ)(x) with @ = 0andg = 1.

We will use these Jacobi polynomials only in the radial direction when the spect
element is adjacent to the centerline and retain the Legendre approximation in the &
direction. Figure 1 shows the parent domain and the Gauss—Lobatto grid in whictsin th
direction (the vertical grid lines) a Jacobi—Gauss—Lobatto grid is used andthuttection
(the horizontal grid lines) a Legendre—Gauss—Lobatto grid is used. If the spectral eleme
not adjacent to the symmetry line Legendre polynomials will be used in both directions.
can be seen from Fig. 1 the grid spacing on the Jacobi—-Gauss—Lobatto grid is not symm
in contrast to that on the Legendre grid.

The outline of the paper is as follows. In Section 2 the properties of the Jacobi polynom
that are relevant to this paper are presented. In Section 3 interpolating polynomials bas
the Jacobi—-Gauss—Lobatto are introduced together with associated quadrature rules.
polynomials are used as basis functions in the spectral element method. The sourt
difficulty along the axis of symmetny = 0 is described in Section 4, and a technique, base
on the introduction of a scaled raditsvhich overcomes this problem is discussed. Finally
in Section 5 numerical results are presented for the application of the new approxima
to the nontrivial axisymmetric problem of a sphere falling under the influence of grav
along the centerline of a cylindrical tube filled with a very viscous fluid. Section 6 concluc
the paper with a summary of the result and a discussion of some of the issues raise
the Appendix the corrected version of the subroutin€oBF for the determination of the
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Gauss—Lobatto integration points is given. The original version of this code can be fo
in [1].

2. JACOBI POLYNOMIALS

The Jacobi ponnomiaI@,f“’ﬂ)(x) are the eigenfunctions of the Sturm—Liouville problem
—(POOU' (X)) +q)u(X) = rw(X)u(x), x € (=1,1), 8)

together with suitable boundary conditions. The coefficigritg, q(x), andw(x) are real-
valued functions such that(x) is a strictly positive, continuously differentiable function
on (—1, 1) and continuous at = £+1; q(x) is nonnegative, continuous, and bounded o
(—1, 1); andw(x) is nonnegative, continuous, and integrable avet, 1).

The Sturm—Liouville problem is singular ip(x) vanishes ax = £1. This property
ensures that the expansion of an infinitely differentiable function in terms of these eic
functions converges with spectral accuracy; i.e., the coefficients with respect to this k
of eigenfunctions decay faster than algebraically. The Jacobi polynom‘f’éfg(x) are the
eigenfunctions of the singular Sturm—Liouville problem with

p(x) = (L — X))@ +x)*F, fora, g > —1,
qx) =0,

and
wX) = (1 —x)%1+ x)?.

Important special cases are obtainedfet 8 = 0 (the Legendre polynomials) and for=
B = —1/2 (the Chebyshev polynomials). The Jacobi polynomials satisfy the orthogona

property

1
/ P@A ()PP (x)w(x)dx =0, for m#n.
-1

The Jacobi polynomials may be generated efficiently using a three-term recurrence
tion providedPO(""ﬁ)(x) and Pl(“’ﬂ)(x) are known. Itis conventional to choo@é“’ﬂ)(x) =1
and to construcP,“”’(x) using the above orthogonality relation. In addition the norma
ization conditionPé""ﬁ)(l) =1, Vk, is used. Thus, fox = 0 andg = 1 we have

1
PP (x) = 5Bx—1).

The particular values = 0 andg = 1 were chosen because this choice corresponds tc
weight function(1 + x) in the Sturm-Liouville problem. This particular weight function
goes to zero fok — —1 asr — 0, as was explained in the introduction.

The corresponding eigenvalueiis = 3, which is obtained from (8).

Thus, with a knowledge of the first two members of the orthogonal set the remain
may be generated using the recurrence relation

POD (x) = (2k+3)(2k+ Dx — 1} POD (x) — { k(2k + 3)

== 0,1
(k + 2)(2k + 1) (k + 2)(2k + 1)] Pk—l (X). (9)
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The proof of this recursion relation can be found ir§a[8] for general Jacobi polynomials.
From (9) the recursion relation for the derivatives can be obtained:

d

2k +3 2k +3)(k+ Dx —17 d

a 0D, 0.1 a Soy

ax e (%) = [k+2}Pk (XH{ kr2@k+D Jax k&
T k@43 Td o

The orthogonal polynomials generated by (9) all satl?,j@/l)(l) = 1. Further useful prop-
erties of theP > are listed below.

The corresponding eigenvalues are giverdpy= k(k + 2). This follows immediately if
one inserts a seriegfio a;x' and requires that all coefficieras = 0 for| > k. Therefore,
the differential equation satisfied by the Jacobi polynomidfs” (x) can be written in the

form

2p©0.1) 0.1

1—x? d)k(z +(1-3% dkx +k(k+2POY = 0. (11)

Furthermore, we can establish by induction using (9) that
POV (=1 = (DX + D). (12)

Since we know the values & (—1) and P (1) we can use (11) to obtain expres-
sions for the values of the derivative Blf“’ﬂ)(x) at the end-points of the intervat[L, 1J:

dp®? i1l
= (=D Zkk + 1)k + 2 1
ax |, (-1 4(+)(+) (13)
and
dROY 1
= —k(k+2). 14
dx |, "2 k+2 (14)

Note that these particular Jacobi polynomials are neither symmetric nor antisymmetric
contrast to the Legendre or Chebyshev polynomials.

3. REPRESENTATION OF THE BASIS FUNCTIONS IN THE RADIAL DIRECTION

Since the weak formulation of partial differential equations requires the evaluation
integrals a suitable integration method has to be selected. In this paper the Gauss—Lo
integration method will be used. The integration points are given byNhe () so-called
Jacobi—Gauss-Lobatto points. The integration rule

1 N
/1w<x)q<x>dx= > wigex) (15)

j=0

is exact for all polynomialg/(x) of degree N — 1 or less if the weights)j, j =0,..., N,
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satisfy the linear system of equations
N 1
Z(x,—)kw,- =/ wx)xkdx, 0<k<N,
j=0 -1

wherew(x) is the Sturm—Liouville weight function and the nodgs j = 0,1, ..., N, are
chosenasfollowsg = —1, xy = 1,andxj, j = 1,..., N — 1,arethe zeros afP” /d x.

It is fairly straightforward to prove that all the Gauss—Lobatto points are contained in
interval (—1, 1). The zeros ofd Pﬁ,o’l)/dx are usually calculated numerically using, for
instance, the subroutine given in Appendix C of [1]. Since this subroutine contains a sr
error, a corrected version will be given in the Appendix. The associated weights in
numerical integration procedure fer= 0, g8 = 1 are given by Funaro [2] as

42N + 1) ey
= 1— X
"0 NZN+ DEN - (N +2) j;( Xi):
22N + 1) 1 .
wJ:_N(N_I_Z)P(O,l) - EP(O,]-) ~ 15]5'\'_1,
N ) gy Pz (X))

22N + 1) Nt

WN

T (N+2(N+DN(N—1) jz:;(l”j)’

wherex;, 1 < j < N — 1, are the interior Gauss—Lobatto points. The vaIueB,{BP(xj)
and d Ph(,o;ll) (xj)/dx can be determined using the recursion relations (9) and (1(
respectively.

Instead of expanding a function in terms of orthogonal polynomials directly, one usui
prefers to approximate the function using a Lagrangian interpolating polynomial basec
the Gauss—Lobatto points. Therefore, in the present situation the polynbguiathich
interpolates a given functiomat the Gauss—Lobatto points has the representation

N
(W) =Y ujh;j(x), (16)
j=0

where the Lagrangian coefficients are given by

_2=DNx = D[ PP ()]

M) = —N72N+DN (7
2 1\ [d pOY
moo = Dl 0] gy (18)
N(N +2) Py~ (Xj) (X — Xj)
d pOD
o = X DIa Py 0] (19)

N(N +2)

The polynomialdy; (x) are constructed so thiat(x;) = &;; . The derivative of the interpolant
at the nodes may be computed using

N
(INuY(6) =Y _ Dijuj, (20)

j=0
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whereDjj = hj(x). Using (17)—-(19) one can obtain explicit representations of the eleme

of D given by
—N(N+2 . .
%’ | = J :O’
2(—N PP (%) . i
N+D %) l=i=N-1j=0
(=N . L
N+D P=N.j=0
(=D"N | 1 P i <N
2 P,(qo‘l)(xj)(l+xj)’ i=01< ] < N 1,
POV 1 . o
A i ,1<i, ] <N-1,
Di'j — P,E‘D.l)(xi) (Xi_xj) # J — ] — (21)
-1 N _
AT%) 1<i=j=<N-1,
1 1 P ; _
BTG T i=N,1<j<N-1,
N+1) . .
(l)(+J(N+1) i =0, j=N,
=PV 04) . .
a0 1<i<N-1j=N,
N(N+2) -1

AR i=j=N.

4. DISCRETIZATION ON THE AXIS OF SYMMETRY

Consider the weak form of the (partial differential) equatian= f in an axisymmetric
coordinate system. Supposes V is approximated by" € V". The weak formulation of
this axisymmetric problem is: Final" € V" such that

//(Luh,vh)rdrdz://fvhrdrdz voll e VI,
r z r z

in which bothr andz are functions o6 andt defined on the parent element. Rewriting this
in terms of the Jacobi polynomials with weight functieiis) = (1 + s) gives

//(Luh,vh)LwdrdZ=//fthwdrdZ vl e VN,
rJz w rJz w

If one now letss — —1then bothr — 0 andw — O; therefora /w is given by L'HGpital’s
rule by

(22)

(23)

r res,ut _ ar

= = — if s=—1.
w (1+4s) 0s

s=-1

(24)

The multiplicative factoww in the weak formulation is absorbed into the numerical weight
and these are always positive, even at the centerline. It is therefore convenient to intro

the scaled radius by
= ifr >0,
f=
a o jfr =0.

(25)
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FIG. 2. Comparison between the Jacobi polynomials (dotted curve) and the Legendre polynomials (¢
curve) forN=1,...,9.

Note thatr /3s # 0 sothe trivial equation mentioned in the introduction is circumvente
Furthermore the scaling ofcan be performed beforehand without testing whether we a
really dealing with a “0O= 0” equation or not.

Since we want to connect spectral elements adjacent to the symmetry axis in w
the function is described by Jacobi polynomials with spectral elements not adjacer
the symmetry axis in which the solution in the radial direction is described by Legen
polynomials it is instructive to see how the Jacobi polynomials behawe-ferl. Figure 2
compares the first nine Jacobi polynomials with the corresponding Legendre polynom
This figure demonstrates that whéhincreases the behavior of both polynomials nee
s = 1 coincides. This also follows from the fact tHa{*" (1) = P>%(1) = 1 and that

d 1

—PP? =IN(N+1

dX N 1 2 ( + )5
while

d 1

—PPl = IN(N+2

dx V| 2 (N+2),
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5. THE SPHERE IN A TUBE

The method described in the preceding section will now be applied to the mixed veloci
pressure—stress formulation of the Stokes problem. Existence and uniqueness of thisr
method have been discussed in [3, 4].

The velocity—pressure—stress formulation of the Stokes problem involves the solutio
the following system of partial differential equations:

T —2nd = 0,
V.-r—-Vp=0, (26)
V-w=0.

Herer is the extra-stress tensav, is the velocity,p is the pressure, andlis the rate of
deformation tensor. The constants the kinematic viscosity.

The configuration considered is a sphere with radiygalling along the centerline of
a tube of radiufR; with a prescribed velocity . This situation is sketched in Fig. 3. The
idea is to divide the physical domaihinto several spectral elemeng®,, 1 < k < K, such

FIG. 3. Geometry of the sphere in a tube.
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that{ K, Q¢ = Q and N = ¢ for all k # |. We also assume that the decompositiol
is geometrically conforming in the sense that the intersection of two adjacent elemen
either a common vertex or an entire edge. Each of the spectral elements is mapped on
parent elemenD = [—1, 1] x [—1, 1] using the transfinite mapping technique [5]. Note
that when a bilinear transfinite mapping is used, the grid can be@higcross element
boundaries.

We approximate the dependent variables on the parent element using Lege
Lagrangian interpolants of degrdkin both spatial directions or, when the spectral elemer
is adjacent to the symmetry line, Jacobi Lagrangian interpolants in the radial direction o
Let Py k (2) denote the space of polynomials of degh®r less, defined over thé el-
ements. We choose the velocity fieldfg « ($2) N H1(22) and construct a Gauss—Lobatto
Legendre grid in each of the elemeri?g, 1 < k < K. The choice of velocity approxi-
mation space ensures that continuity is enforced across element boundaries. The ve
representation is then given by

N

N
WE O =)D vl hi®h ). (27)

i=0 j=0

where the Lagrangian interpolartis(¢), 0 <i < N, defined on the parent interval with
& € [—1, 1], are given either by the Legendre Lagrangian interpolant

(1—&EHLK(®)
N(N +1DLn(E)(E — &)

or by the Jacobi Lagrangian interpolant given by (17)—(19).

Maday and Patera [7] have shown that by choodiig.(2) as the approximation
space for the pressure if the velocity approximation spa& ($2) the discrete Balska—
Brezzi condition is satisfied. For the Legendre approximation this means that the pres
is expanded as

hi () = —

(28)

N-1N-1

PRE =D pihi@h ). (29)

i=1 j=1

in which the interpolantﬁi (¢),1<i <N —1, are defined on the interval-[L, 1] and in
the case of the Legendre polynomials are given by

(1-&)LL®

hi) = - 30
© N(N+DLnED)E = &) (30)
and for the Jacobi polynomials are given by

- 1-£)[L PP

fue) = —— )Py ©) (31)

N(N+ 2PV E)E — &)

The components of the extra-stress tensor are chosBg i(€2). This means that the
extra-stress tensor has a representation of the form

N

N
™HE O =) 7 hi@Eh @), (32)

i=0 j=0
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in which h; (¢) is given either by (28) for the Legendre polynomials or by (17)—(19) for th
Jacobi polynomials.

Along an element interface contiguous elements share common grid points and so
are two unknowns associated with each component of velocity and extra-stress at
points. The values of these unknowns are forced to be the same for the velocity,
giving rise to a continuous velocity approximation. However, this is not done explicitly f
the extra-stress, which therefore allows for the possibility of a discontinuous extra-st
approximation across element boundaries (see [4] for the justification of this approach

The discrete problem is constructed by choosing appropriate test spaces for eac
the variables and then using a basis for these spaces as test functions in the varia
formulation. This process leads to the system

ANTN — BK‘WN = fN’
—BnTn + DY PN = On. (33)

Dnwn = h,

in which f  contains Dirichlet boundary conditions and the body forggs¢ontains pre-
scribed boundary values, ahg contains prescribed velocity values. Heg is the extra-
stress mass matriBy is the spectral approximation to the divergence operator acting «
symmetric 2-tensors, aridly is the spectral approximation of the divergence operator actir
on vectors.

This system of equations can be written more succinctly as

Av -B; 0 ™ fy
By 0 Df|[wn]=]on]. (34)
0 Dy O PN hn

Since Ay is a diagonal matrix, owing to the orthogonality of the basis functions, (3:
constitutes a symmetric system. The zeros on the diagonal of this system mean that
pivoting or preconditioning is required to solve it numerically. Following the doubly cot
strained minimization procedure described in [3] this system can be solved. This apprc
essentially applies pivoting and an incomplete LU-factorization.

Eliminating the discrete extra-stress tensor front(2td (33) one obtains

—BnAYBiWN + Di pn = On + By Ay (35)

Since the mass matri¥\y, is a diagonal matrix with strictly positive diagonal elements
(35) can be set up usingN3d/2 multiplications, in whichN is the polynomial order used
in the spectral methodl,is the number of spatial dimensions, and the facf@ri& obtained
if one takes the symmetry of By Ay*B;; into account. This matrix, however, does not
have to be formed explicitly if an iterative solution method is used since one only need
calculate the operation of this matrix on a given vector.

Eliminating the discrete velocity vectary from (35) and (33) yields the equation which
pn has to satisfy fowy to satisfy (33),

Qnpn =hn — DN(BNAKle?\])_l(gN + BNAﬁlfN), (36)
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where
Qn = —Dn (BuAR'BY) D} (37)

Although By Ay B}, is a full matrix its inverse does not need to be calculated when a nes
conjugate gradient (CG) method is used to solve (36pfer

Oncepy is calculated from (36), the vectary satisfying (33) can be calculated from
(35), after which the discrete extra-stress approximatigmvhich will satisfy (3%) follows
from (33"). So the whole solution procedure follows the same doubly constrained appro
as the compatibility analysis described in [3].

The physical parameters used in the problem of flow pasta sphérfeare n = 1, R; =
1, Ry = 2,andL = 8. This meansthatthe velocity is zero at the sphereiand 1, u, = Oat
inflow, outflow, and the cylinder wall. At the axis of symmetry= O andr;, = 0. Although
the presence of the sphere is felt everywhere in the cylinder due to the elliptic nature o
governing equations, a cylinder of lendth= 8 is sufficient to calculate the nondimensiona
drag. The discretization parametems the degree of the spectral approximation in eac
element. Results obtained on the nearly orthogonal meshes depicted in Fig. 4 are pres
usingN = 6, 8, 10, and 12 for the Jacobi—Legendre method. These plots indicate that
spurious transitions from Jacobi—Legendre elements to Legendre—Legendre elemen
present. Also, the solution at and near the symmetry axis is well resolved using the m
Jacobi—-Legendre interpolation.

Figure 5 presents a sequence of meshes that are nonorthogonal to the symmetry
Figure 6 displays the contour plot of the pressureMo&= 10. The behavior of the extra-
stress components and their dependence on the valNeabdng the symmetry axis and

i
1l

il

FIG. 4. The four spectral element grids for which results of the sphere—cylinder problem are given. Tt
correspond tdN =6, N =8, N =10, andN =12, respectively folK =5. The bold lines indicate the spectral
elements; the other lines are the Gauss—Lobatto grid. This mesh is nearly orthogonal to the symmetry axis.
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FIG. 5. The four spectral element grids for which results of the sphere—cylinder problem are given. Th
correspond tdN =6, N =8, N =10, andN =12, respectively foK =5. The bold lines indicate the spectral
elements; the other lines are the Gauss—Lobatto grid. This mesh is nonorthogonal to the symmetry axis.

the sphere are given in Figs. 7-10 fér= 6, 8, and 10. All solutions are interpolated on a
fine mesh with polynomials of ordéd = 20 before plotting. Since the graphs fdr= 8

andN = 10 are almost indistinguishable, there was little point in increasing the degree
approximation further. All the graphs show that convergence has been obtained for pc

p

38.9748
29.4688
19.9627
10.4567
0.950605
-8.55545
-18.0615
-27.5676
-37.0736
-46.5797

FIG. 6. Contour plot of the pressure.



AXISYMMETRIC STOKES PROBLEMS 95

20

o

I B DO R [N T R

Tr6, Tr8, Trr10
o

[

A
fo
o
(8]
B~

FIG. 7. Graphs of the extra-stress componeptalong the symmetry axis and the sphereXoe=6, N =8,
andN = 10.

on the symmetry axis. The only differences occur for points on the surface of the sph
which also explains the different nondimensional drags for various polynomial orders gi
in Table I.

The graph of the,,-component of the extra-stress tensor depicted in Fig. Nfer 6
shows little bumps neax = —2 and x = 2. These are a result of the discontinuou:
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FIG. 8. Graphs of the extra-stress componeptalong the symmetry axis and the spherefbe=6, N =8,
andN = 10.
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FIG. 9. Graphs of the extra-stress componeptalong the symmetry axis and the sphereNoe=6, N =8,

andN = 10.

L2-approximation of the extra-stress components as explained in [4]. For higher val
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of N this jump decreases and will vanish in the limithf— oc.

The pressure along the symmetry axis, which was identified in the introduction a
potential source of difficulty, is displayed in Fig. 11. Since the pressure is determined u
a constant the graphs for different valued\bflo not necessarily overlap. To compare the

FIG. 10. Graphs of the extra-stress compongptalong the symmetry axis and the sphereNoe 6, N =8,

andN = 10.
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TABLE |
Nondimensionalized Drag on the Sphere Calculated with
the Jacobi—Legendre Method and the Legendre—Legendre
Method on a Nearly Orthogonal Mesh

N F* Legendre—Legendre F* Jacobi-Legendre
6 5.949195 5.945073
8 5.948211 5.949030

10 5.947920 5.947822

12 5.947471 5.947394

14 5.947388 —

16 5.947381 —

18 5.947381 —

Note.Drag compared té* =5.94739.

various approximations, the pressure level has been chosen such that the pressure is
to zero forx = 0. The inset to Fig. 11 shows the convergence of the pressure jump betw
spectral elements for increasing polynomial order.

A nondimensional quantity which is widely used to demonstrate convergence of a gi
numerical method on the sphere problem is the drag on the sphere. This is defined |
the drag on the sphere divided by the Stokes drag of a sphere in an infinite expanse,
61 RsV. These results are tabulated in Table I. The nondimensionalized drag coeffici
are compared with the value obtained by [6] on their finest mesh using the EEME/FEN

The results in Table | are compared with more extensive computations using
Legendre—Legendre formulation. Both methods display an exponential convergenc
ward the limiting value oF* = 5.9474, in accordance with the results by Lunsmanal.
[6]. Table | shows that the new polynomial basis is able to give results comparable wi
method which also produces satisfactory results. This is a prerequisite for any new met
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4353252154050 05115 2 25 3 35 4
X

FIG. 11. Graphs of the pressuigalong the symmetry axis and the sphereNoe 6, N =8, andN = 10.
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TABLE Il
Nondimensionalized Drag on the Sphere Calculated with
the Jacobi-Legendre Method and the Legendre—Legendre
Method on a Skew Mesh

N F* Legendre—Legendre F* Jacobi—Legendre
6 5.963221 5.954784
8 5.955422 5.950952

10 5.950300 5.948051

12 5.948018 5.947435

Note.Drag compared té* =5.94739.

Similar calculations have been performed on the meshes displayed in Fig. 5 (s
Table I1). Again all meshes consist of five spectral elements with increasing polynon
order. Although the solutions on both meshes converge to the limiting vakie f5.9474
the Jacobi—Legendre formulation gives a slightly smaller error than does the conventi
Legendre-Legendre approach. This means that the Jacobi—-Legendre basis offers a
provement over the Legendre—Legendre formulation in this specific case. However, it is
clear whether this conclusion holds in general. We expect that the differences betweel
Jacobi-Legendre and the Legendre—Legendre method are small in situations where th
is almost orthogonal to the axis of symmetry but that the Jacobi-Legendre performs b
in the case where the grid lines are nonorthogonal to the symmetry axis. This is graphic
illustrated by Figs. 12 and 13. For the case where the grid lines are almost normal tc
axis of symmetry both logarithmic errors are of the same order of magnitude. Figure
seems to suggest that the Jacobi—Legendre method converges faster foNqitjizer does
the Legendre—Legendre method, but the value afe too low to actually conclude this.

Figure 13 shows that in the case where the grid lines are highly nonorthogonal to the s
metry axis the logarithmic error as a functionhvis much smaller for the Jacobi—Legendre
method than for the Legendre—Legendre method as was anticipated in the discussi
Section 1.

LN(ERR)

Ty

(ORI ST ST TS TR AN TN T T SN VTN N NSNS [ SN S M N WA
6 7 8 9 10 1 12
N

FIG. 12. Logarithmic convergence plot corresponding to the data in Table I.
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FIG. 13. Logarithmic convergence plot corresponding to the data in Table II.

6. CONCLUSIONS

The use of Jacobi polynomials in spectral elements adjacent to the axis of symm
in axisymmetric problems circumvents a special treatment for points for whicl® by
introducing a scaled radial distanteThis means that one does not have to check wheth
one is dealing with a trivial equation since the scaled radial distance can be introdt
beforehand. This in itself is a special treatment, but it is automatically built into the meth
By using the Jacobi polynomials in the Stokes problem discussed above, we see the
axial pressure gradient along the centerline contributes to the set of algebraic equa
to be solved, whereas if Legendre polynomials were used this would not, in general, |
been the case. A comparison with the Legendre—Legendre formulation, in which the tri
equation is avoided by means of an application ofdfital's rule, shows an exponential
rate of convergence similar to that found in the Jacobi—Legendre formulation.

Ithas to be noted that we have used explicitly the fact that the side corresponsliagtd
coincides with the symmetry axis. If, for instanee= 1 is mapped onto the symmetry axis
instead, then it is preferable, of course, to use the Jacobi polynomials defirdbys).
These polynomials are associated with a weight funation s), which will go to zero for
s — 1. In the spectral element program used in this study the spectral elements adjace
the symmetry axis are renumbered in such a way that the symmetry axis corresponds
sides = —1 on the parent domain. Alternatively one may empRfy-? (s) polynomials
when the “wrong” side is mapped onto the centerline.

If the symmetry axis coincides with= —1, one can generalize the above describe
procedure toP @Y (s) polynomials corresponding to a weight functich— x)*(1 + x).
This weight function will also have the property that is goes to zero in the same way ¢
goes to zero. Although alternative polynomials are feasible, it is not clear what the me
are of using even more general Jacobi polynomials.

The method described in this paper is generic in the sense that it can be applied t
axisymmetric (partial differential) equations. The application to the axisymmetric Stol
problem merely serves as an illustration. This particular problem has been tackled on
types of meshes. On the first mesh the grid lines are almost orthogonal to the symmetry
and both the mixed Jacobi—Legendre method and the Legendre—Legendre method pe
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equally well. On the second mesh the grid lines have been chosen to be nonorthogor
the symmetry axis and the mixed Jacobi method gives better results than the full Lege
basis, which can be clearly seen from the convergence plots.

APPENDIX

Subroutine to Calculate the Gauss—Lobatto Points

This subroutine is essentially the one found in [1] with a minor correction in the routi
JACOBF. The program is written in FORTRAN.

subroutine jacobl(alpha,beta,N,xjac)

(e]

computes the Gauss-Lobatto collocation points for the
jacobi polynomials

C

c n: degree of approximation

¢ alpha: parameter in jacobi weight

c Dbeta: parameter in jacobi weight

C

c xjac: output array with the Gauss-Lobatto roots
C

they are ordered from the largest (+1.0)
to the smallest (-1.0)

implicit none
integer N
double precision alpha,beta,xjac(0:50)

integer np,nh,npp,i,j,jm,k,kstop

double precision pnplp,pdnplp,pnp,pdnp,pnmlp,pdnml,
pnplm,pdnpim,pnm,pnmim,pdnm,det,
pnml,cs,x,pnpl,pdnpl,pn,pdn,
rp,rm,ag,bg,dth,cd,sd,ss,poly,pder,
cssave,delx,epsg,recsum,hulpar(0:64) ,pi

double precision alp,bet,rv

common /jacpar/ alp,bet,rv

data kstop/10/

data epsg/1.0d- 25/

“H H P P

pi=4d0*datan(1d0)
alp=alpha
bet =beta
rv=1+alp
np=n+1
C
¢ compute the parameters in the polynomial whose roots
are desired
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call jacobf (np,pnplp,pdnplp,pnp,pdnp,pnnlp,pdnml, 1d0)
call jacobf (np,pnplm,pdnplim,pnm,pdnm,pnmim,pdnml,- 1d0)
det = pnp* pnmim- pnm* pnmlp

rp=-pnplp

rm=-pnplm

ag= (rp* pnmim- rm* pnmlp)/det

bg = (rm* pnp- rp* pnm) /det

xjac(1) =1d0
nh= (n+1)/2
nh=n

set-up recursion relation for initial guess for the roots

compute the first half of the roots by polynomial deflation

27

29
30

39

dth=pi/(2%n+1)
cd = cos(2d0* dth)
sd =sin(2d0* dth)
cs =cos(dth)

ss =sin(dth)

do 39 j=2,nh

X=cs

do 29 k=1,kstop
call jacobf (up,pnpl,pdnpl,pn,pdn,pnml,pdnml,x)
poly =pnpl+ag+* pntbg* pnml
pder = pdnpl+ag+* pdnt+bg* pdnml
recsum=0d0
jm=j-1
do 27 1=1,jm

recsum=recsum+ 1d0/ (x- xjac(i))

continue
delx =- poly/(pder- recsum* poly)
x=x+delx
if (abs(delx).lt.epsg) goto 30
continue
continue
xjac(j) =x
cssave = cs* cd- ss*sd
ss=cs* sdtss*xcd
cs =cssave

continue

xjac(np) =- 1d0

npp =n+2

101
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use symmetry for second half of the roots

do 112 i=1,N+1
hulpar(N- i+1) =xjac(i)
112 continue
do 113 i=0,N
xjac(i) =hulpar(i)
113 continue
return
end

subroutine jacobf(n,poly,pder,polyml,pderml,polym2,
pderm2,x)

computes the jacobi polynomial (poly) and its derivative
(pder) of degree n at x

implicit double precision(a-h,o-z)
common/jacpar/alp,bet,rv
apb=alp+bet

poly=1do

pder =040

if (n.eq.0) return

polylst =poly

pderlst =pder

The following 2 lines differ from the ones given in [1].

poly =5d- 1* (1d0+bet)* (x- 1d0) + 5d- 1* (1d0+alp)* (x+1d0)
pder = 5d- 1* (2d0+apb)

if (n.eq.1) return
do 19 k=2,n
al =2d0* kx (k+apb)+* (2d0* k+apb- 2d0)
a2 = (240 k+apb- 1d0)* (alp** 2- bet** 2)
b3 = (2d0* k+apb- 2d0)
a3=b3+ (b3+1d0)* (b3+2d0)
a4 =2d0* (k+alp- 1d0)* (k+bet- 1d0)* (2d0* k+apb)
polyn= ((a2+a3* x)* poly- adx polylst)/al
pdern = ((a2+a3+* x)* pder- ad* pderlst+a3+poly)/al
psave =polylst
pdsave =pderlst
polylst =poly
poly=polyn
pderlst =pder
pder =pdern



AXISYMMETRIC STOKES PROBLEMS 103

19  contiune
polyml =polylst
pderml =pderlst
polym2 =psave
pderm2 = pdsave
return
end
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